Skip to main content

Solving Systems of Equations

Substitution

Solve the following systems of equations using substitution.

1

x+y=2x+y=2 xy=0x-y=0

2

x2+y2=169x^2+y^2=169 3x+2y=393x+2y=39

3

x=y+3x=y+3 x=y2+7x=y^2+7


Elimination

Solve the following systems of equations using elimination.

1

x+3y=5x+3y=-5 x8y=0-x-8y=0

2

3x2y=03x-2y=0 3x+2(y+5)=103x+2(y+5)=10

3

7x+12y=637x+12y=63 2x+3y=152x+3y=15


Back Substitution

Use back-substitution to solve the following systems of linear equations

1

x4y+3z=3x-4y+3z=3 y+z=1-y+z=-1 z=5z=-5

2

x2y+z=6x-2y+z=-6 2x3y=72x-3y=-7 x+3y3z=11-x+3y-3z=11

3

x2y+z=5x-2y+z=5 2x+3y+z=52x+3y+z=5 x+y+2z=3x+y+2z=3


Partial Fraction Decomposition

Write the partial fraction decomposition for the rational expression.

1

4xx2+6x+8\frac{4-x}{x^2+6x+8}

2

x2+2xx3x2+x1\frac{x^2+2x}{x^3-x^2+x-1}


Matrices

Determine the dimension of the following matrices:

1

[3110]\begin{bmatrix} -3 \\ 1 \\ 10 \end{bmatrix}

2

[4]\begin{bmatrix} 4 \end{bmatrix}

3

[51003229]\begin{bmatrix} 5 & -1 & 0 & 0 \\ 3 & 2 & 2 & 9 \end{bmatrix}

4

[3122]\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}

5

[11111]\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}


Gauss-Jordan Elimination

Use matrices to solve the system of equations, if possible. Use Gauss-Jordan elimination.

1

x+y+4z=0x+y+4z=0 3xyz=03x-y-z=0 x+y2z=1-x+y-2z=-1

2

x3y+z=2x-3y+z=2 3xyz=63x-y-z=-6 x5y+3z=10-x-5y+3z=10

3

x+2yz=3x+2y-z=3 xyz=3x-y-z=-3 2x+y+3z=102x+y+3z=10