Solving Systems of Equations
Substitution
Solve the following systems of equations using substitution.
x+y=2
x−y=0
x2+y2=169
3x+2y=39
x=y+3
x=y2+7
Elimination
Solve the following systems of equations using elimination.
x+3y=−5
−x−8y=0
3x−2y=0
3x+2(y+5)=10
7x+12y=63
2x+3y=15
Back Substitution
Use back-substitution to solve the following systems of linear equations
x−4y+3z=3
−y+z=−1
z=−5
x−2y+z=−6
2x−3y=−7
−x+3y−3z=11
x−2y+z=5
2x+3y+z=5
x+y+2z=3
Partial Fraction Decomposition
Write the partial fraction decomposition for the rational expression.
x2+6x+84−x
x3−x2+x−1x2+2x
Matrices
Determine the dimension of the following matrices:
−3110
[4]
[53−120209]
[3212]
[11111]
Gauss-Jordan Elimination
Use matrices to solve the system of equations, if possible. Use Gauss-Jordan elimination.
x+y+4z=0
3x−y−z=0
−x+y−2z=−1
x−3y+z=2
3x−y−z=−6
−x−5y+3z=10
x+2y−z=3
x−y−z=−3
2x+y+3z=10